Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 87-93, 2019.
Article in Chinese | WPRIM | ID: wpr-802528

ABSTRACT

Objective: To prepare Juglone-loaded poly lactic-co-glycolic acid nanoparticles (Jug-PLGA-NPs), and investigate their physicochemical properties, release characteristics in vitro and anti-tumor activities on A375 melanoma cells in vitro. Method: Jug-PLGA-NPs were prepared by emulsification-solvent evaporation method. Then the particle size, encapsulation efficiency, drug loading rate and in vitro release characteristics were investigated. Fluorescence microscopy was used to observe the uptake of PLGA-NPs in vitro. The distribution of PLGA-NPs in BALB/c nude mice after tail vein injection was observed by the small living animal imaging system. Their inhibition effect on proliferation of A375 cells was detected by thiazolyl blue tetrazolium bromide (MTT) assay. Apoptosis rate and cell cycle detection were performed by flow cytometry. Western blot was used to determine the protein kinase B (Akt), phosphorylated Akt (p-Akt) and cyclinD1. Result: The average particle size of the prepared Jug-PLGA-NPs was (149.6±21.5) nm, entrapment rate of (68.39±2.51)%, and drug-loading rate of (5.07±0.98)%, showing good sustained-release characteristics. PLGA-NPs showed good penetration and targeting properties in cellular uptake in vitro and in vivo imaging. Different concentrations of Jug-PLGA-NPs could significantly inhibit the proliferation and promote apoptosis of A375 cells in a time and concentration dependent manner (P1 expression (P0/G1 phase (PConclusion: The Jug-PLGA-NPs are easy to prepare and have good sustained-release characteristics, tumor targeting and anti-tumor ability, providing a new pharmaceutical dosage form for the future clinical application of Jug.

2.
China Journal of Chinese Materia Medica ; (24): 2093-2097, 2016.
Article in Chinese | WPRIM | ID: wpr-236065

ABSTRACT

The objective of this study is to develop a new-type biodegradable, biocompatible curcumin-loaded nanoerythrosomes (Cur-RBC-NPs) by means of the sonication method. The size of Cur-RBC-NPs was optimized by varying drug loading parameters. The morphology, size distribution, stability, in vitro release pattern, cellular uptake of nanoparticles and in vitro anti-tumor effects were evaluated, respectively. The results showed the prepared Cur-RBC-NPs were nearly uniform spheres, with an average diameter of (245.7 ± 1.3) nm. Encapsulation efficiency (EE) and load efficiency (LE) of Cur-RBC-NPs were 50.65% ± 1.36% and 6.27% ± 0.29%. And the nanoparticles had a good sustained release property. According to the in vitro experiment, Cur-RBC-NPs were effectively taken in by tumor cells, and exhibited a significant anti-tumor effect. In conclusion, the method for preparing Cur-RBC-NPs is convenient, with a good sustained release behavior and anti-tumor efficacy, and so expected to be a new-type nano-drug delivery system in clinical practice.

SELECTION OF CITATIONS
SEARCH DETAIL